

Mathematics Specialist Units 1,2 Test 3 2017

Calculator Assumed Proof, Vector Proof, Circle Geometry

STUDENT'S NAME

DATE: Friday 19 May

TIME: 60 minutes

MARKS: 52

INSTRUCTIONS:

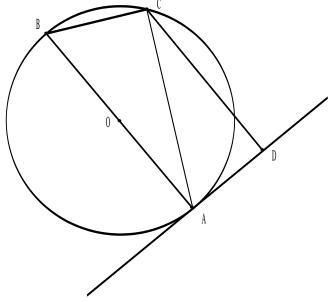
Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (6 marks)

Consider the true statement:

"If quadrilateral ABCD is a rhombus, then it is a parallelogram"


(a) Write down the converse of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]

(b) Write down the contrapositive of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]

(c) Write down the inverse of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]

2. (8 marks)

In this diagram, AOB is the diameter of a circle, AC is a chord of the circle and CD is perpendicular to the tangent AD.

(a) Prove $\triangle ABC$ is similar to $\triangle CAD$

(b) Hence show $(AC)^2 = AB.CD$

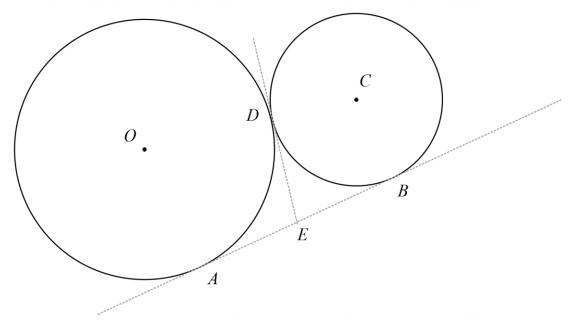

[3]

[2]

(c) Determine the radius of the circle when $AC = 15 \ cm$ and $AD = 12 \ cm$. [3]

3. (6 marks)

OABC is a parallelogram with $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$. *M* is the midpoint of the diagonal *OB*.


(a) Determine \overrightarrow{CM} in terms of \underline{a} and \underline{c}

[2]

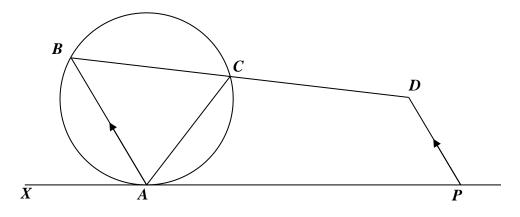
- (b) Determine \overrightarrow{CA} in terms of \underline{a} and \underline{c} [1]
- (c) Hence show that M lies on \overrightarrow{CA} and is the midpoint of \overrightarrow{CA} . [3]

4. (10 marks)

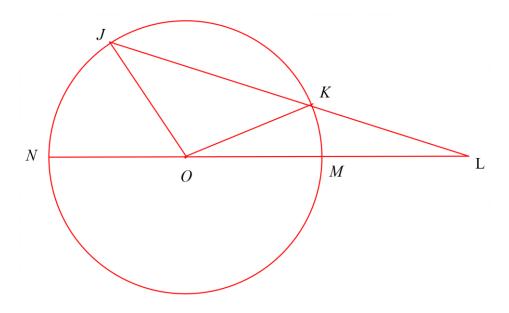
The circle with centre O and the circle with centre C meet externally at D so that DE is a common tangent and AB is a tangent to both circles.

(a) Prove *O*, *D* and *C* are collinear.

[3]


[3]

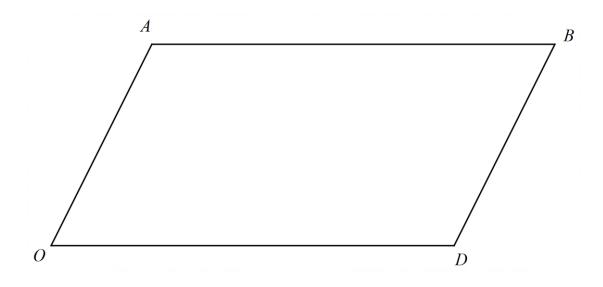
(b) Prove the common tangent at *D* bisects *AB*.


(c) Prove $\angle ADB = 90^{\circ}$. [4]

5. (7 marks)

In the diagram, AP is a tangent to the circle, D is the point on BC produced such that AB is parallel to PD.

Prove that *ACDP* is a cyclic quadrilateral.


In the diagram above, *O* is the centre of the circle. *LMON* and *JKL* are straight lines. Let $\angle JON = \beta$ and $\angle KLM = \theta$. The length *KL* is equal to the radius of the circle.

Prove that $\beta = 3\theta$.

7. (8 marks)

Parallelogram OABD has C on \overrightarrow{DB} such that $\overrightarrow{DC} = \frac{3}{5}\overrightarrow{DB}$ and E on \overrightarrow{OD} such that $\overrightarrow{OE} = \frac{2}{3}\overrightarrow{OD}$. Let $\overrightarrow{OA} = a$, $\overrightarrow{OD} = d$, $\overrightarrow{OP} = h\overrightarrow{OC}$ and $\overrightarrow{AP} = k\overrightarrow{AE}$ where P is the point of intersection of \overrightarrow{AE} and \overrightarrow{OC} .

Determine the values of h and k.

